SOFIA Project

SOFIA – Stratospheric Observatory for Infrared Astronomy

Code R/RAF Cranwell Brief Ting Tseng 5/8/2007

SOFIA Member Organizations

- -NASA (DFRC & ARC)
- –DLR (Deutsches Zentrum Fur Luft- and Raumfahrt)
- –USRA (Universities Research Space Assoc.)
- -L3 Com
- -MPC

Aircraft Information

- Aircraft: Modified Boeing 747-SP
- •Modifications:
 - -Telescope Cavity In the Aft Section
 - -Cavity Door on Left Aft Fuselage
 - •URD (Upper Rigid Door)
 - LFD (Lower Flex Door)
 - AA (Aperature Assembly)
 - –Infrared Telescope Assembly (2.7 Meter Telescope)
 - •Working wavelength range: 0.3 μ m to 1.6 mm
 - –Mission Systems (Mission Controls)

Major Components of SOFIA

Science Instruments

Science and Mission Operations Center

National Aeronautics and Space Administration Dryden Flight Research Center

Aircraft External View

Airborne Observatory Layout

National Aeronautics and Space

Dryden Flight Research Center

Telescope Assembly

Telescope Assembly

Uncoated Primary Mirror

Airborne Astronomy

- SOFIA will operate above the tropopause above 99.9% of the water vapor in the atmosphere - thereby opening up the IR universe
- SOFIA is a near-space observatory that comes home after every flight and coupled with a long life time this enables:
 - Wide instrument complement and fast change out
 - Larger and more complex instrumentation than space-based platforms
 - Rapid instrument upgrades
 - Rapid incorporation of new, cutting-edge technology
 - Test bed for future space instrumentation
 - Training ground for young experimentalists

Requirements & Specifications

- Wavelength Range 0.3 1600 microns
- Unvignetted elevation range 20° to 60° above the horizon
- Configuration: Instrument Access in Cabin
- Telescope effective Aperture Diameter 2.5 meters
- Time at ≥ 41,000 feet ≥ 6 hours
- Observing hours per year ≥ 960
- Lifetime≥ 20 years
- IR functional capabilities: chopping, nodding, & scanning
- Image quality 80% encircled energy within 1.5 arcsec at visible wavelength
- Image stability at focal plane 0.2 arcsec rms

Combined to 80% encircled energy within 5.3 arcsec diameter image size at First Science Flight improving to 1.6 arcsec within 3 additional years.

Technical Challenges

Open Port cavity

- ➤Influence on aircraft Stability & Control
- >Acoustic Issues
 - ❖ Resonance
 - ❖Structural Fatigue
 - Environment for Telescope Performance
- ➤ Drag (aircraft performance)
- Structural Modification
 - >Strength
 - >Stiffness
 - ➤ Transition to unmodified areas

Technical Challenges

- Thermal Environment
 - >Systems exposure
 - ➤ Science performance
- Cavity Door
 - ➤ Accommodate fuselage deformation
 - ➤ Track Telescope motion
 - ➤ Drive system safety
- Lightweight Primary Mirror
- Rotational Isolation System

Observatory Operation

SOFIA Flight Test

- Functional Check Flight and Ferry Flight to Dryden
- Closed Door Flight Test
- Open Door Flight Test
- Initial Operational Capabilities Flight Test
- Final Operational Capabilities Flight Test